New developments in the spatial encoding of spin interactions for single-scan 2D NMR.

نویسندگان

  • Yoav Shrot
  • Assaf Tal
  • Lucio Frydman
چکیده

Single-scan 2D NMR relies on a spatial axis for encoding the indirect-domain internal spin interactions. Various strategies have been demonstrated for fulfilling the needs underlying this procedure. All such schemes use gradient-echoed sequences that leave at their conclusion solely the effects of the internal interactions along the indirect domain; they also include a real-time scheme that though simple, yields in general mixed-phase line shapes. The present paper introduces two new proposals geared up for easing the spatial encoding underlying single-scan 2D NMR methodologies. One of these is capable of delivering dispersive-free peaks along the indirect domain, and thereby purely-absorptive 2D line shapes, in amplitude-encoded experiments. The other demonstrates for the first time, the possibility to obtain single-scan 2D spectra without echoing the effects of the encoding gradient-simply by applying a single-pulse frequency sweep to encode the interactions. Both of these modes are compatible with homo- and heteronuclear correlations, and exhibit a number of complementary features vis-à-vis encoding alternatives that have so far been presented. The overall principles underlying these new spatially encoding protocols are derived, and their performance demonstrated with single-scan 2D NMR TOCSY and HSQC experiments on model compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions.

A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found t...

متن کامل

A continuous phase-modulated approach to spatial encoding in ultrafast 2D NMR spectroscopy.

Ultrafast 2D NMR replaces the time-domain parametrization usually employed to monitor the indirect-domain spin evolution, with an equivalent encoding along a spatial geometry. When coupled to a gradient-assisted decoding during the acquisition, this enables the collection of complete 2D spectra within a single transient. We have presented elsewhere two strategies for carrying out the spatial en...

متن کامل

Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR.

Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy provides the means to extract diverse physical, chemical, and biological information at an atomic level. Conventional sampling schemes, however, may result in relatively long 2D experiments; this has stimulated the search for alternative, rapid acquisition schemes. Among the strategies that have been recently proposed for achievin...

متن کامل

Spatially resolved multidimensional NMR spectroscopy within a single scan.

We have recently demonstrated that the spatial encoding of internal nuclear magnetic resonance (NMR) spin interactions can be exploited to collect multidimensional NMR spectra within a single scan. Such experiments rely on an inhomogeneous spatial excitation of the spins throughout the sample, and lead to indirect-domain peaks via a constructive interference among the spatially resolved spin-pa...

متن کامل

Single-scan 2D DOSY NMR spectroscopy.

Spatial encoding is a particular kind of spin manipulation that enables the acquisition of multidimensional NMR spectra within a single scan. This encoding has been shown to possess a general applicability and to enable the completion of arbitrary nD NMR acquisitions within a single transient. The present study explores its potential towards the acquisition of 2D DOSY spectra, where the indirec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in chemistry : MRC

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 2009